The difference between geom_density in ggplot2 and density in base R -
i have data in r following:
bag_id location_type event_ts 2 155 sorter 2012-01-02 17:06:05 3 305 arrival 2012-01-01 07:20:16 1 155 transfer 2012-01-02 15:57:54 4 692 arrival 2012-03-29 09:47:52 10 748 transfer 2012-01-08 17:26:02 11 748 sorter 2012-01-08 17:30:02 12 993 arrival 2012-01-23 08:58:54 13 1019 arrival 2012-01-09 07:17:02 14 1019 sorter 2012-01-09 07:33:15 15 1154 transfer 2012-01-12 21:07:50
where class(event_ts) posixct
.
i wanted find density of bags @ each location in different times.
i used command geom_density(ggplot2)
, plot nice. wonder if there difference between density(base)
, command. mean difference methods using or default bandwith using , like.
i need add densities data frame. if had used function density(base)
, knew how can use function approxfun
add these values data frame, wonder if same when use geom_density(ggplot2)
.
a quick perusal of ggplot2 documentation geom_density()
reveals wraps functionality in stat_density()
. first argument there references adjust
parameter coming base function density()
. so, direct question - built off of same function, though exact parameters used may different. have control on setting parameters, may not able have amount of flexibility want.
one alternative using geom_density()
calculate density want outside of ggplot()
, plot geom_line()
. example:
library(ggplot2) #100 random variables x <- data.frame(x = rnorm(100)) #calculate own density, set parameters desire d <- density(x$x) x2 <- data.frame(x = d$x, y = d$y) #using geom_density() ggplot(x, aes(x)) + geom_density() #using home grown density ggplot(x2, aes(x,y)) + geom_line(colour = "red")
here, give identical plots, though may vary more data , settings.
Comments
Post a Comment